3 research outputs found

    Ultrascan solution modeler: integrated hydrodynamic parameter and small angle scattering computation and fitting tools

    Get PDF
    This is a preprint of a paper in the proceedings of the XSEDE12 conference, held July 16-19, 2012 in Chicago, IL. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.UltraScan Solution Modeler (US-SOMO) processes atomic and lower-resolution bead model representations of biological and other macromolecules to compute various hydrodynamic parameters, such as the sedimentation and diffusion coefficients, relaxation times and intrinsic viscosity, and small angle scattering curves, that contribute to our understanding of molecular structure in solution. Knowledge of biological macromolecules' structure aids researchers in understanding their function as a path to disease prevention and therapeutics for conditions such as cancer, thrombosis, Alzheimer's disease and others. US-SOMO provides a convergence of experimental, computational, and modeling techniques, in which detailed molecular structure and properties are determined from data obtained in a range of experimental techniques that, by themselves, give incomplete information. Our goal in this work is to develop the infrastructure and user interfaces that will enable a wide range of scientists to carry out complicated experimental data analysis techniques on XSEDE. Our user community predominantly consists of biophysics and structural biology researchers. A recent search on PubMed reports 9,205 papers in the decade referencing the techniques we support. We believe our software will provide these researchers a convenient and unique framework to refine structures, thus advancing their research. The computed hydrodynamic parameters and scattering curves are screened against experimental data, effectively pruning potential structures into equivalence classes. Experimental methods may include analytical ultracentrifugation, dynamic light scattering, small angle X-ray and neutron scattering, NMR, fluorescence spectroscopy, and others. One source of macromolecular models is X-ray crystallography. However, the conformation in solution may not match that observed in the crystal form. Using computational techniques, an initial fixed model can be expanded into a search space utilizing high temperature molecular dynamic approaches or stochastic methods such as Brownian dynamics. The number of structures produced can vary greatly, ranging from hundreds to tens of thousands or more. This introduces a number of cyberinfrastructure challenges. Computing hydrodynamic parameters and small angle scattering curves can be computationally intensive for each structure, and therefore cluster compute resources are essential for timely results. Input and output data sizes can vary greatly from less than 1 MB to 2 GB or more. Although the parallelization is trivial, along with data size variability there is a large range of compute sizes, ranging from one to potentially thousands of cores with compute time of minutes to hours. In addition to the distributed computing infrastructure challenges, an important concern was how to allow a user to conveniently submit, monitor and retrieve results from within the C++/Qt GUI application while maintaining a method for authentication, approval and registered publication usage throttling. Middleware supporting these design goals has been integrated into the application with assistance from the Open Gateway Computing Environments (OGCE) collaboration team. The approach was tested on various XSEDE clusters and local compute resources. This paper reviews current US-SOMO functionality and implementation with a focus on the newly deployed cluster integration.This work was supported by NIH grant K25GM090154 to EB, NSF grant OCI-1032742 to MP, NSF grant TG-MCB070040N to BD, and NIH grant RR-022200 to B

    A High Throughput Workflow Environment for Cosmological Simulations

    Get PDF
    The next generation of wide-area sky surveys offer the power to place extremely precise constraints on cosmological parameters and to test the source of cosmic acceleration. These observational programs will employ multiple techniques based on a variety of statistical signatures of galaxies and large-scale structure. These techniques have sources of systematic error that need to be understood at the percent-level in order to fully leverage the power of next-generation catalogs. Simulations of large-scale structure provide the means to characterize these uncertainties. We are using XSEDE resources to produce multiple synthetic sky surveys of galaxies and large-scale structure in support of science analysis for the Dark Energy Survey. In order to scale up our production to the level of fifty 10^10-particle simulations, we are working to embed production control within the Apache Airavata workflow environment. We explain our methods and report how the workflow has reduced production time by 40% compared to manual management.Comment: 8 pages, 5 figures. V2 corrects an error in figure
    corecore